High resolution x-ray structure of tyvelose epimerase from Salmonella typhi.
نویسندگان
چکیده
Tyvelose epimerase catalyzes the last step in the biosynthesis of tyvelose by converting CDP-d-paratose to CDP-d-tyvelose. This unusual 3,6-dideoxyhexose occurs in the O-antigens of some types of Gram-negative bacteria. Here we describe the cloning, protein purification, and high-resolution x-ray crystallographic analysis of tyvelose epimerase from Salmonella typhi complexed with CDP. The enzyme from S. typhi is a homotetramer with each subunit containing 339 amino acid residues and a tightly bound NAD+ cofactor. The quaternary structure of the enzyme displays 222 symmetry and can be aptly described as a dimer of dimers. Each subunit folds into two distinct lobes: the N-terminal motif responsible for NAD+ binding and the C-terminal region that harbors the binding site for CDP. The analysis described here demonstrates that tyvelose epimerase belongs to the short-chain dehydrogenase/reductase superfamily of enzymes. Indeed, its active site is reminiscent to that observed for UDP-galactose 4-epimerase, an enzyme that plays a key role in galactose metabolism. Unlike UDP-galactose 4-epimerase where the conversion of configuration occurs about C-4 of the UDP-glucose or UDP-galactose substrates, in the reaction catalyzed by tyvelose epimerase, the inversion of stereochemistry occurs at C-2. On the basis of the observed binding mode for CDP, it is possible to predict the manner in which the substrate, CDP-paratose, and the product, CDP-tyvelose, might be accommodated within the active site of tyvelose epimerase.
منابع مشابه
Identification and sequencing of Salmonella enterica serotype typhi isolates obtained from patients with perforation and non-perforation typhoid fever.
We describe the characterization of Salmonella enterica serovar Typhi, isolated from the blood of patients with perforation and non-perforation typhoid fever, by a combination of conventional microbiological tests, 16S rRNA gene sequencing, and flagellin gene and CDP-tyvelose epimerase (rfbE) gene sequencing. The 16S rRNA gene sequencing showed that there were four base mutations from perforati...
متن کاملIdentification and sequence of rfbS and rfbE, which determine antigenic specificity of group A and group D salmonellae.
Salmonella group A, group B, and group D strains have paratose, abequose, and tyvelose, respectively, as the immunodominant sugar in their O antigens, which are otherwise identical; only the final steps differ in the biosynthetic pathways of these sugars. The gene rfbJ from a group B strain, encoding abequose synthase, the final and only unique step in the biosynthesis of CDP-abequose, has been...
متن کاملStructure of CDP-D-glucose 4,6-dehydratase from Salmonella typhi complexed with CDP-D-xylose.
Tyvelose is a unique 3,6-dideoxyhexose found in the O antigens of some pathogenic species of Yersinia and Salmonella. It is produced via a complex biochemical pathway that employs CDP-D-glucose as the starting ligand. CDP-D-glucose 4,6-dehydratase catalyzes the first irreversible step in the synthesis of this 3,6-dideoxysugar by converting CDP-D-glucose to CDP-4-keto-6-deoxyglucose via an NAD+ ...
متن کاملMutants of group D1 Salmonella carrying the somatic antigen of group A organisms: evidence for the lack of cytidine diphosphate paratose-2-epimerase activity.
The mutant strains of Salmonella durban that possessed O antigen 2, 12 of group A Salmonella were defective in the cytidine diphosphate paratose-2-epimerase activity. The enzyme preparation of the mutant strains catalyzed the conversion of cytidine diphosphate glucose into cytidine diphosphate paratose but not into cytidine diphosphate tyvelose. The defect in the epimerase activity was also con...
متن کاملCloning and sequencing of ompf Salmonella typhi Salmonella ompf gene in Escherichia coli Origami
Background and Aim: Salmonella Typhi belongs to the family Enterobacteriaceae, gram-negative bacilli and causes gastrointestinal diseases such as typhoid. This bacterium has a special structure and various genes, including the ompf gene (outer membrane protein). Recent studies have shown the possibility of using ompf in the development of a diagnostic tuberculosis vaccine. Therefore, the aim of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 23 شماره
صفحات -
تاریخ انتشار 2003